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LE'ITER TO THE EDITOR 

Lattice-induced anisotropy in a diff usion-limited growth model 

Fereydoon Family?$, T a m b  VicsekSg and Becky TaggettS I( 
t Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, 
USA 
$ Department of Physics, Emory University, Atlanta, GA 30322, USA 

Received 22 April 1986 

Abstract. We have investigated the diffusion-limited aggregation process on a square lattice 
by solving the Laplace equation numerically. In contrast to previous models, at each time 
step the occupancy probability is used directly for the growth of all of the perimeter sites. 
We find that regardless of the initial shape of the seed particles, the final pattern of the 
aggregate has an anisotropic shape. We have interpreted the pronouncement of the 
lattice-induced anisotropy as arising from averaging of the shape fluctuations in this growth 
process. The values of the fractal dimension of the clusters are found to agree with the 
predictions of Turkevich and Scher implying that the clusters in our model have the same 
structure as large DLA and dielectric breakdown clusters. 

The study of aggregation and growth processes has become a subject of increasing 
interest in recent years [l-41. Much of this interest has been stimulated by the 
diff usion-limited aggregation ( DLA) model introduced by Witten and Sander [ 51. The 
simple, yet fundamental, nature of the diffusion-limited aggregation process coupled 
with its complex and mathematically intractable features have made DLA one of the 
central models for the investigations of non-equilibrium growth and aggregation 
processes [l-41. DLA clusters are fractals [6] and their fractal dimension D can be 
regarded as a critical exponent describing a non-trivial power-law divergence with the 
linear size of the aggregate. It is for this reason that the very recent suggestions [7,8] 
that the DLA fixed point is unstable with respect to the symmetry of the underlying 
lattice on which it is investigated has generated much interest. This is the strongest 
evidence to data for the dependence of any critical exponent on the lattice structure 
and therefore deserves detailed investigation. In addition to the possible non-univer- 
sality of D it was also found that the shape of large DLA [8-111 and Eden [12] clusters 
is anisotropic, i.e. it depends on the underlying lattice. This kind of anisotropy is 
rooted in the growth mechanism itself and is different from the presumably lattice- 
independent anisotropy of large lattice animals and percolation clusters found by 
Family et a1 [13]. 

In this letter we study a model closely related to diffusion-limited aggregation 
processes on a square lattice by calculating the cluster growth probability on the 
interface by solving the Laplace equation numerically. In contrast to previous studies 
[14] based on the solution of the Laplace equation, in our model at each time step 
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the growth takes place with a certain probability at all perimeter sites. We find that 
the addition of several particles at each growth step leads to an averaging of the shape 
fluctuations and the aggregates grown in this manner are more regular than those 
generated with the random addition of a single particle at each stage. This is clearly 
seen by the fact that the clusters in our model take on the symmetry of the underlying 
structure of the lattice much faster than in the other models, regardless of the initial 
shape of the seed cluster. Moreover, despite the change in the cluster shape, we find 
the fractal dimension of the clusters to agree with those predicted by Turkevich and 
Scher [7] for DLA [SI and the dielectric-breakdown-type [14] clusters on a square 
lattice. This indicates that the clusters in our model have the same structure as very 
large clusters in these models grown on a square lattice. 

It was pointed out by Witten and Sander [5] that the random walk problem in DLA 

satisfies the equation Au( r, t)  = 0, where U( r, t )  is the concentration of the random 
walkers at the vicinity of point r at time t. Since the perimeter sites are perfect traps 
and the walkers cannot penetrate the cluster, U = O  on the cluster. There is also an 
additional boundary condition that U( r + a), because random walkers are isotropically 
launched from infinity. The probability p (  r )  that a walker is absorbed at the perimeter 
site r is proportional to the flux Au. Thus, the DLA problem maps onto an electrostatic 
problem [14,15] where U is the potential obtained by solving the Laplace equation 
with the boundary conditions U = 0 on the conductor and U = 1 on a circle of infinite 
radius. Indeed, the patterns found in the experiments on dielectric breakdown [14] 
and electrodeposition [ 15, 161 are very similar to the computer-generated DLA clusters. 

One obtains a generalisation of the above model if one assumes that p ( r )  is given 
by ~7 ,141  

where the electric field E = -Vu and 77 is an adjustable parameter. In ( l ) ,  the 
probability density is normalised over the cluster perimeter T. Turkevich and Scher 
[7] have recently calculated the occupancy probability p (  r )  for diffusion-limited aggre- 
gation on a square lattice assuming that large clusters have a diamond-shaped envelope. 
They further argued that the growth rate of the large DLA is independent of the details 
of the cluster interface and from the singularity of the occupation probability they 
found that the fractal dimension D of the clusters on a square lattice is given by [7] 

D = 2-  (77/3). (2) 
One of the objectives of the present letter is to test the above prediction for our growth 
model. 

We have solved the Laplace equation on a square lattice with a circle of radius 
R,,, maintained at constant unit potential and a single seed particle or a cluster of 
particles placed at the origin at a potential of zero. In each growth step, the perimeter 
sites are occupied with the probability (~E~/Ema.Jv where E is the gradient of the 
potential at the growth site and E,,, is the maximum value of IEJ at the given growth 
stage. Thus, sites having the maximum value of the gradient are always occupied, but 
other perimeter sites grow with a smaller probability. This model corresponds to those 
experimental situations where the growth occurs along the surface simultaneously with 
varying probability. After all interface sites have been examined for possible occupancy, 
the potential U is ‘relaxed’ by replacing U on each lattice site by the average of the 
potential on the four nearest-neighbour lattice sites. The iterations are stopped when 
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they change the value of U at a site by less than one part in a thousand. After the 
iterations are stopped, i.e. the potential u is relaxed, all surface sites are again examined 
for possible occupancy. First a random number in the range 0 < x < 1 is generated. If 
x < (lEl/Emax)7, then the site is occupied. The sequence of relaxation and growth is 
repeated until a large cluster has grown. 

The typical patterns obtained from our model for 77 = 1.00 and 2.00 are shown in 
figures l (a )  and l(b) respectively. Figure 1 should be compared with ordinary DLA 
clusters [ 5 ]  on a square lattice and both figures should be compared with the dielectric 
breakdown patterns [ 141 for the corresponding values of 77 on a square lattice. Clearly 
the patterns in our model are much more regular and more anisotropic than clusters 
of the same size in the other models. The regularity of the patterns and the pronounced 
anisotropy of their shapes arises from the smoothing or the averaging effect of adding 
several particles to the cluster at each growth step with probabilities that are calculated 
for each site. Similar results have recently [ l l ]  been found for DLA clusters. Clearly 
as 77 increases more weight is given to the ‘hottest’ tips and the cluster becomes more 
stringy. Figure l(b) is similar to figure 16 of Chen and Wilkinson [17] who solved 
the Laplace equation for the case of viscous flow in a network of channels and 
introduced the randomness into the medium by varying the conductivity of the channels. 

Figure 1. Patterns generated in our model after 90 growth 
stepswith(a) q = l . O , ( b )  q = 2 . 0 ,  (c) q=1 .0 .  
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Figure 2. Log-log plot of the cluster mass N against the radius of gyration R,, averaged 
over ten simulations, each having 90 growth steps, for 7 = 0.05 (m), 1 (0) and 2 (A) .  The 
slopes of the straight lines through the data points are 1.95, and i, calculated from relation 
( 1 )  for 7 =0.05, and 1 and 2, respectively. 

To show that the anisotropy of the clusters is a general feature of the growth on a 
square lattice, in figure l (c)  we have studied the growth with a number of particles in 
a circularly shaped seed. From the simulations we see that the underlying shape and 
symmetry of the seed is rapidly lost by a few growth steps leading to anisotropic 
patterns like figures l (a)  and l(b).  

In order to study the scaling properties of the clusters and to determine their fractal 
dimension we have calculated the dependence of the cluster mass N on the radius of 
gyration R,. The results averaged over ten simulations, each having 90 growth steps, 
are shown in figure 2 for 7 = 0.05, 1 and 2. The slopes of the straight lines drawn 
through the data points are 1.95, z and 2 and are based on the prediction of Turkevich 
and Scher [7] for D given in relation (1) for 7 =0.05, 1 and 2, respectively, and fit 
the data quite well. We have also calculated D by determining the dependence of the 
average number of filled sites ff in a box of length L centred about the central site 
on the cluster. The results for 7 = 0.05, 1 and 2 are shown in figure 3 where log ff is 
plotted against log L. Again, the slopes of the straight lines in figure 3 are 1.95, $ and 
$ and are calculated from relation (1) and fit the data quite well. The results of figures 
2 and 3 indicate that although the clusters in our model have a highly anisotropic 
structure, they still have the values of the fractal dimension directly calculated from 
simulations of DLA [ 51 and dielectric breakdown [ 141 clusters on a square lattice. This 
suggests that the clusters grown in our model have the same structure as much larger 
clusters in the other models grown on a square lattice. 

The anisotropic shape of the clusters is due to the structure of the underlying lattice 
[7-111. This lattice anisotropy can, however, be compensated by the fluctuations due 
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Figure 3. Log-log plot of the mean number of particles within a box of length L, against 
L, averaged over ten simulations, each having 90 growth steps, for 7 = 0.05 (W), 1 (0) 
and 2 (A). The slopes of the straight lines through the data points are 1.95, $ and $, 
calculated from relation ( 1 )  for 7 = 0.05, 1 and 2, respectively. 

to the randomness of the growth process by various extents [ll, 171. In the original 
version of DLA [ 51 and the dielectric breakdown model [ 141 one particle is added to 
the growing cluster at each time step and the fluctuations dominate the growth more 
effectively than in our case. This is so because in our model the probabilities p ( r )  at 
a given time step to do not depend on the position of the newly (at to) added particles. 
This results in a decrease of fluctuations because the probability of filling a site is not 
perturbed by the random event whether the neighbouring sites were filled at to. As a 
result some of the short length scale fluctuations are averaged out like in a real space 
renormalisation method. 

In conclusion, we have studied the diffusion-limited aggregation growth process 
on a square lattice by solving the Laplace equation numerically. In contrast to previous 
studies [14], in our model the occupancy probability is used directly for growth of 
every site on the interface. We find that regardless of the initial shape of the seed 
particles, the final pattern of the aggregate has an anisotropic shape. We have interpreted 
the anisotropy as arising from the structure of the underlying lattice due to the averaging 
of the shape fluctuations. The value of the fractal dimension of the clusters is found 
to agree with the predictions of Turkevich and Scher [ 71, implying that our aggregates 
are similar to very large DLA [5] and dielectric breakdown clusters [14]. 

This research was supported by the Office of Naval Research and the National Science 
Foundation. 
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Note added in prool: Recently, Family et a1 [ 181 have analytically studied the effects of an m-fold anisotropy, 
induced by the growth mechanism or the lattice symmetry, on the asymptotic structure of two-dimensional 
DLA clusters. They find D = 1 + (1 - vi,)/ vI , Y , ~  = f and v L  = 2( m - 1)/3m, where vil and v I  are the exponents 
describing the divergence of lengths parallel and perpendicular to the direction of anisotropy, respectively. 
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